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Learning the Conditional Independence
Structure of Stationary Time Series:
A Multitask Learning Approach

Alexander Jung

Abstract—We propose a method for inferring the conditional in-
dependence graph (CIG) of a high-dimensional Gaussian vector
time series (discrete-time process) from a finite-length observation.
By contrast to existing approaches, we do not rely on a parametric
process model (such as, e.g., an autoregressive model) for the ob-
served random process. Instead, we only require certain smooth-
ness properties (in the Fourier domain) of the process. The pro-
posed inference scheme works even for sample sizes much smaller
than the number of scalar process components if the true under-
lying CIG is sufficiently sparse. A theoretical performance analysis
provides sufficient conditions on the sample size such that the new
method is consistent asymptotically. Some numerical experiments
validate our theoretical performance analysis and demonstrate su-
perior performance of our scheme compared to an existing (para-
metric) approach in case of model mismatch.
Index Terms—Graphical model selection, high-dimensional sta-

tistics, multitask LASSO, multitask learning, nonparametric time
series, sparsity.

I. INTRODUCTION

W E consider a stationary discrete-time vector process or
time series which could model, e.g., the time evolution

of air pollutant concentrations [1], [2] or medical diagnostic data
obtained in electrocorticography [3].
One specific way of representing the dependence structure of

a vector process is via a graphical model [4], where the nodes of
the graph represent the individual scalar process components,
and the edges represent statistical relations between the indi-
vidual process components. More precisely, the (undirected)
edges of a conditional independence graph (CIG) associated
with a process represent conditional independence statements
about the process components [4], [1]. In particular, two nodes
in the CIG are connected by an edge if and only if the two cor-
responding process components are conditionally dependent,
given the remaining process components. Note that the so de-
fined CIG for time series extends the basic notion of a CIG
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for random vectors by considering dependencies between en-
tire scalar time series instead of dependencies between scalar
random variables [5], [6]. However, for the special case of i.i.d.
time series, these two concepts are fully equivalent.
In this work, we investigate the problem of graphical model

selection (GMS), i.e., that of inferring the CIG of a time series,
given a finite-length observation. Accurate GMS is an important
preprocessing step for various inference tasks such as network
anomaly detection or the prediction of future values of the time
series [5].
Our work applies to the high-dimensional regime, where the

model dimension, given by the number of process components,
is allowed to be (much) larger than the amount of observed
data, given by the sample size [7]–[9], [3], [10]–[12]. It is then
intuitively clear that some additional problem structure is re-
quired in order to allow for the existence of consistent estima-
tion schemes. Here, this structure is given by sparsity constraints
placed on the CIG. More precisely, we assume that the under-
lying CIG has a small maximum node degree, i.e., each node
has a relatively small number of neighbors.

A. Existing Work

GMS for high-dimensional processes with observations
modeled as i.i.d. is nowwell developed [11], [9]. For continuous
valued Gaussian Markov random fields, binary Ising models as
well as mixed graphical models (containing both continuous
and discrete random variables), efficient approaches (based on
convex optimization) for inferring the underlying graphical
model have been proposed [11], [9], [13], [14]. The authors
of [11], [9], [14] present sufficient conditions such that their
proposed recovery method is consistent in the high-dimensional
regime. These sufficient conditions are complemented by the
fundamental performance limits derived in [15], showing that
in certain regimes the (computationally efficient) selection
scheme put forward in [14] performs essentially optimal.

B. Contribution

In this paper, we develop and analyze a nonparametric com-
pressive GMS scheme for general stationary time series. Thus,
by contrast to most existing approaches [3], [10], [16], we do
not rely on a specific finite dimensional model for the observed
process. Instead, we require the observed process to be suffi-
ciently smooth in the spectral domain. This smoothness con-
straint will be quantified by certain moments of the process au-
tocovariance function (ACF) and requires the ACF to be effec-
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tively supported on a small interval, whose size is known be-
forehand, e.g., due to specific domain knowledge.
Inspired by a recent neighborhood regression approach to

GMS for Gaussian Markov random fields based on i.i.d. sam-
ples [11], we propose a GMS method for time series by gen-
eralizing the neighborhood regression approach to the Fourier
domain. Our approach exploits a specific problem structure, in-
herent to the GMS problem, corresponding to a special case
of a block-sparse recovery problem [17]–[19], i.e., a multitask
learning problem [20], [21].
Our main conceptual contribution is the formulation of GMS

for time series as a multitask learning problem which is de-
fined over a continuum of tasks, which are indexed by a con-
tinuous frequency variable . Based on this formula-
tion, we develop a GMS scheme by combining a nonparametric
Blackman-Tukey (BT) spectrum estimator with the multitask
LASSO (mLASSO) [20], [22]. A theoretical performance anal-
ysis yields an upper bound on the probability of the proposed
GMS method to deliver a wrong CIG. Moreover, we assess the
empirical performance of the proposed scheme by means of il-
lustrative numerical experiments.

C. Outline of the Paper

We formalize the problem of GMS for stationary time se-
ries in Section II. Our novel compressive GMS scheme for sta-
tionary processes is presented in Section III, which is orga-
nized in two parts: First, we discuss the spectrum estimator em-
ployed in our selection scheme. Then, we show how to apply the
mLASSO for inferring the CIG, by formulating GMS for time
series as a multitask learning problem. In Section IV, we present
a theoretical performance guarantee in the form of an upper
bound on the probability of our algorithm to fail in correctly
recovering the true underlying CIG. Finally, the results of some
illustrative numerical experiments are presented in Section V.

Notation and Basic Definitions

Boldface lowercase letters denote column vectors, whereas
boldface uppercase letters denote matrices. The th entry of
a vector is denoted by , and the entry of a matrix
in the -th row and -th column by . The submatrix
of comprised of the elements in rows and columns

is denoted . The superscripts , , and denote
the transpose, (entry-wise) conjugate, and Hermitian transpose,
respectively. The th column of the identity matrix will be de-
noted by . For some, , we write .
We denote by the set of all vector-valued functions

such that each component is square in-
tegrable, i.e., (we also use the shorthand )
with norm . We then define the
generalized support of as

. For and a subset
, we denote by the vector-valued function which

is obtained by retaining only those components with
. Given , we define the norms

and , respec-
tively.

Given a matrix , we denote its spectral norm as
. The norm is defined as the

largest magnitude of its entries, i.e., .

II. PROBLEM FORMULATION

Consider a -dimensional stationary Gaussian
random process with (matrix-valued) ACF

, which is assumed to be summable,
i.e., .1
The spectral density matrix (SDM) of the process is de-

fined as

(1)

The SDM may be interpreted as the multivariate generaliza-
tion of the power spectral density of a scalar stationary random
process [5], [24].
For our analysis, we require a mild technical condition for the

eigenvalues of the process SDM .
Assumption 1: For known positive constants , we

have

(2)

We remark that the restriction induced by Assumption 1 is
rather weak. E.g., the upper bound in (2) is already implied by
the summability of the process ACF. The lower bound in (2)
ensures that the CIG satisfies the global Markov property [4],
[25]. An important and large class of processes satisfying (2) is
given by the set of stable VAR processes [26]. In what follows,
we will assume without loss of generality that , implying
that .
The CIG of the -dimensional vector process is the

undirected graph with node set , corre-
sponding to the scalar process components , and
edge set . An edge between nodes and is absent,
i.e., , if the component processes and
are conditionally independent given the remaining components

[1]. For a Gaussian stationary process
whose SDM is invertible for every , which
is implied by Assumption 1, the CIG of a process can be
characterized conveniently via its SDM [1], [6]:
Lemma II.1: Consider a Gaussian stationary vector process
with associated CIG and SDM satisfying (2). The

edge set of the CIG is then characterized by

(3)

Thus, in the Gaussian case, the edge set corresponds to the
zero entries of the inverse SDM , and the GMS problem
is equivalent to detecting the zero entries of .
We highlight that, by contrast to graphical models for random

vectors, here we consider conditional independence relations
between entire scalar time series and not between scalar random
variables. In particular, the CIG of a time series does not de-

1The precise choice of norm is irrelevant for the definition of summability,
since in finite-dimensional vector spaces all norms are equivalent [23].
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pend on time but applies to the entire time series, as illustrated
by the following example:
Consider the vector autoregressive (VAR) process [26]

(4)

The noise process in (4) consists of i.i.d. Gaussian random
vectors with zero mean and covariance matrix . A little cal-
culation reveals that this stationary AR process has zero mean
and its ACF is given by [26].
Since the VAR parameter matrix in (4) satisfies

, we have . For an arbitrary but fixed time
index , the Gaussian random vector is zero mean
with covariance matrix . Thus, the scalar time
samples and are marginally, i.e., for a fixed time
index , independent. However, since the inverse SDM of
the process in (4) is given explicitly by [1]

(5)

we have, upon comparing (5) with the relation (3), that the en-
tire scalar process components and are
dependent. In general, the marginal conditional independence
structure at a fixed time is different from the conditional
independence structure of the entire time series.
The problem of GMS considered in this paper can be

stated as that of inferring the CIG , or more
precisely its edge set , based on an observed finite length
data block . Similar to [11], our approach
to GMS is via separately estimating the neighborhood

of each node . For the
specific neighborhood , the edge set characterization (3)
yields the following convenient characterization

(6)

The neighborhood characterization (6) can be generalized
straightforwardly to the neighborhood of an arbitrary
node (cf. Section III-A).2 For the derivation and analysis
of the proposed GMS method, we will, besides Assumption 1,
rely on three further assumptions on the CIG , inverse SDM

and ACF of the underlying process .
The first of these additional assumptions constrains the CIG

of the observed process to be sparse, as made precise in
Assumption 2: The maximum node degree

of the process CIG is upper bounded by a known small con-
stant , i.e.,

(7)

2Note that from the validity of (3) alone, we can only conclude that
for a pair . For it might be

however that only for belonging to a set of measure zero,

which means although . However, this issue
is resolved by the validity of Assumption 3. In particular, if for some positive

, (8) is in force, (3) becomes:

The next assumption is necessary in order to allow for accu-
rate selection schemes based on a finite length observation. In
particular, we require the non-zero entries of not being
too small.
Assumption 3: For a known positive constant ,

(8)
The integrand in (8) is well defined, since by (2) we have

for all and any .
For the proposed selection method to be accurate, we require

the process to be sufficiently smooth in the spectral domain.
By a smooth process , we mean a process such that
the entries of its SDM are smooth functions of . These
smoothness constraints will be expressed in terms of moments
of the process ACF:
Assumption 4: For a small positive constant and a given

non-negative weight function , that typically increases with
, we have the bound

(9)

For the particular weighting function , we will
use the shorthand

(10)

We may interpret the moment as a measure for the effec-
tive ACF width of the process. Another particular choice for
the weighting function will be given in Section IV. This choice
is related to the window function of the BT estimator which is
part of our GMS method (cf. Section III).
We note that Assumption 4 is similar in spirit to the un-

derspread assumption for linear time varying systems and
nonstationary processes [27] in that it allows to construct
efficient decorrelation transformations. In particular, for a
smooth process conforming to Assumption 4, one can verify
that the discrete Fourier transform (DFT) of the observed block
yields random vectors which are approximately uncorrelated
for different frequencies. This decorrelation in the frequency
domain is the key idea behind our Fourier based approach.
In what follows, we will formulate and analyze a GMS

scheme for the class of -dimensional Gaussian stationary
processes conforming to Assumptions 1–4. This process
class will be denoted as for brevity.

III. THE SELECTION SCHEME

The GMS scheme developed in this section is inspired by the
neighborhood regression approach in [11]. A main conceptual
difference of our approach to [11] is that we perform neighbor-
hood regression in the frequency domain. Moreover, while the
approach in [11] is based on a standard sparse linear regression
model, we formulate the neighborhood regression for time se-
ries as a multitask learning problem. This multitask learning
problem is based on an estimator for the SDM, which will be
discussed next.
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A. SDM Estimation
Due to the direct relation (3) between the zero pattern of the

inverse SDM and the edge set of the CIG, a naive approach
to GMS would be to first estimate the SDM , then invert
this estimate and determine the location of the non-zero entries.
With regards to the first step, it is natural to estimate by
replacing the ACF in (1) with an empirical version which
is based on sample averages. This yields the estimate

(11)

where, and

(12)

The real-valued window function in (11), from now on
assumed to satisfy

(13)

is chosen such that the estimate is guaranteed to
be a psd matrix. A sufficient condition for this to be
the case is non-negativity of the discrete-time Fourier
transform (DTFT) of the window function, i.e.,

[28, p. 40].
In what follows, we need a specific representation of the es-

timate in (11), which is stated in
Lemma III.1: Consider the estimate given by (11), for

. Let us define the matrix

(14)

where is the data matrix,
denotes the first rows of the size-

DFT matrix, i.e.,
and

(15)

with .
We then have the identity

(16)

Proof: Appendix A.
As evident from the factorization (16), the rank of sat-

isfies . Therefore, in the high-dimensional
regime, where the number of observations is much smaller
than the number of process components, the estimates

will be rank-deficient and cannot be inverted to obtain es-
timates of the edge set via the relation (3).
In order to cope with the rank deficiency of the SDM estimate

, we next show that finding the support of the inverse SDM
based on the observation can be formu-

lated as a multitask learning problem. For clarity, we detail this
approach only for the problem of estimating the neighborhood

. The generalization to the neighborhood of an arbi-
trary node is straightforward.
Indeed, consider the permuted process ,

with the permutation matrix where
denotes the permutation exchanging entry

1 with entry and leaving the remaining entries unchanged.
As can be verified easily, the SDM of the process
is then given by . Moreover, the CIG of
contains the edge if and only if the CIG of
contains the edge , i.e.,

(17)

Thus, the problem of determining the neighborhood in
the CIG of the process is equivalent to the problem of de-
termining the neighborhood in the CIG of the permuted
process .
Note that the SDM estimator (11) can be regarded as the

natural adaptation, to the case of SDM estimation for vector
process, of the BT estimator [28] for the power spectral den-
sity of a scalar process.

B. Multitask Learning Formulation
The basic intuition behind our approach is to perform a decor-

relation of the time samples by applying a DFT.
In particular, given the observation

, we compute the length- DFT as

(18)

for . It can be shown that for a vector process
conforming to Assumption 4 and a sufficiently large sample size
, the DFT vectors , which may be inter-

preted as random samples indexed by frequency , are approx-
imately independent. However, what hinders the straight appli-
cation of the neighborhood regression method in [11], devel-
oped for the case of i.i.d. samples, is the fact that the samples

are not identically distributed. Indeed, the covariance ma-
trix of the Gaussian random vector is roughly equal to the
SDM value , which in general
varies with . However, for processes with a smooth SDM, i.e.,
conforming to Assumption 4 with small , the SDM is approx-
imately constant over small frequency intervals and therefore, in
turn, the distribution of consecutive samples is nearly iden-
tical. We exploit this by masking the DFT samples such
that, for a given center frequency , we only retain
those samples which fall into the pass band of the spectral
window in (15), which is the shifted (by the center fre-
quency ) DTFT of the window function employed in the
BT estimator (11). This spectral masking then yields the modi-
fied DFT samples

(19)

By considering the significant DFT vectors approximately
as i.i.d. samples of a Gaussian random vector with zero mean
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and covariance matrix , we can immediately apply the
neighborhood regression approach in [11]. In particular, we
formulate, for a specific center frequency , a sparse linear
regression problem by regressing the first entry of the vector

against its remaining entries. More precisely, based on
the vector and matrix ,

...
...

(20)
we define, for each , the linear regression model

(21)

with the vector-valued parameter function ,
with , given by

(22)

Let us make the relation between the quantities , and
the observed data explicit by noting that,
upon combining (18), (19) and (20), we have

(23)

and
(24)

The product in (23) just amounts to computing
the DFT (of length ) of the process component . Sim-
ilarly, the rows of in (24) are given by the DFTs
(of length ) of the process components .
The error term in (21) is defined implicitly via the def-

initions (22), (23), and (24). We show in Section IV that, if the
SDM estimator (11) is accurate, i.e., is close to for
all , the error term will be small.
As can be verified easily, by comparing expressions (23) and

(24) with (14), the vector and the matrix are given by
the columns of the matrix defined in Lemma III.1. There-
fore, according to (16), we have the identity

(25)

where denotes the BT estimator in (11).
The link between the multitask learning problem (21) and the

problem of determining is stated in
Lemma III.2: Consider the parameter vector defined for

each via (22). The generalized support of is
related to via

(26)

Proof: Partition the SDM and its inverse as

(27)
According to (3), we have

(28)

where is the lower left block of (cf. (27)). Applying
[29, Fact 2.17.3] to (27),

(29)

Note that , since we assume to
be strictly positive definite (cf. (2)), implying in turn that
is also strictly positive definite. Therefore,

Thus, the problem of determining the neighborhood of
node has been reduced to that of finding the joint support
of the parameter vectors , of the linear model (21),
using the observation of the vectors given by (23).
Recovering the vector-valued parameter function

based on the model (21), is an instance of a multitask
learning problem [20], [21], [30], [31], being, in turn, a special
case of a block-sparse recovery problem [17]. Compared to
existing work on multitask learning, the distinctive feature of
the multitask learning problem given by (21) is that we have a
continuum of individual tasks indexed by .

C. Multitask LASSO Based GMS

A popular approach for estimating a set of vectors with a
small joint support, based on linear measurements, is the group
LASSO [32]. Specializing the group LASSO to the multitask
model (21) yields the multitask LASSO (mLASSO) [20], [22].
However, while [20], [22] consider a finite number of tasks, we
consider a continuum of tasks indexed by . A natural
generalization of the mLASSO to our setting is

(30)

Note that the optimization in (30) has to be carried
out over the Hilbert space with inner product

, and induced norm
. Since the cost function in (30) is

convex, continuous and coercive, i.e., ,
it follows by convex analysis that a minimizer for (30) ex-
ists [33]. In the case of multiple solutions, we mean by

any of these solutions.3
If the design parameter in (30) is chosen suitably (cf.

Section IV), the generalized support of coincides with that
of the true parameter vector in (21), i.e.,

(31)

Thus, we can determine the neighborhood via com-
puting the mLASSO based on the observation vector and

3Note that a sufficient condition for uniqueness of the solution to (30) would
be strict convexity of the objective function. However, in the high-dimensional
regime, where , the system matrix defined by
(33) is singular and therefore the objective function in (30) is not strictly convex.
Thus, in this regime, uniqueness of the solution to (30) requires additional as-
sumptions such as, e.g., incoherence conditions [34]. We emphasize, however,
that our analysis does not require uniqueness of the solution to (30).
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system matrix constructed via (23) and (24) from the ob-
served data . The generalization to the
determination of the neighborhood for an arbitrary node

is accomplished via (17) by using the permuted obser-
vation in (23) and (24) instead of .
We arrive at the following algorithm for estimating the CIG of
the observed process.
Algorithm 1:
1) Given a specific node , form the permuted data ma-
trix , and compute the observa-
tion vector and system matrix according to

(32)

and
(33)

2) Based on the observation vector and system matrix
given by (32) and (33), compute the mLASSO esti-

mate according to (30) and estimate the neighbor-
hood by the index set

(34)

for some suitably chosen threshold .
3) Repeat step 1) and step 2) for all nodes and combine
the individual neighborhood estimates to obtain the
final CIG estimate .

The proper choice for the mLASSO parameter in (30) and
the threshold in (34) will be discussed in Section IV.
For the last step of Algorithm 1, different ways of combining

the individual neighborhood estimates to obtain the edge
set of the CIG estimate are possible. Two intuitive choices
are the “AND” rule and the “OR” rule. For the AND (OR) rule,
an edge is present in , i.e., , if and only if

and (or) .
It is instructive to rewrite the mLASSO (30) computed in step

2 of Algorithm 1 in the form

(35)

where the matrix and vector are sub-blocks of the
SDM estimate in (11), i.e.,

(36)

The equivalence of (35) and (30) can be verified easily by (25).
The formulation (35) naturally suggests the generalization of
our GMS method to a continuous-time process (with ef-
fective bandwidth ). Indeed, we just need to replace the in-
tegration variable in (35) by the integration vari-
able and the matrix and vector with
corresponding sub-blocks of a continuous-time SDM estimate

.
Let us highlight that Algorithm 1 is a nonparametric method

as it relies on the nonparametric SDM estimator (11). In par-
ticular, it does not require to fit a finite dimensional parametric

model to the observed process (which is done, e.g., in the VAR-
based method put forward in [3]).
We finally mention that, in principle, Algorithm 1 can also

be applied to non-Gaussian processes. However, the resulting
graph estimate is then not related to a CIG anymore but to a
partial correlation graph of the process [1].

D. Numerical Implementation
In order to numerically solve the optimization problem (30)

we will use a simple discretization approach.More precisely, we
require the optimization variable to be piece-
wise constant over the frequency intervals , for

, where the number of intervals is chosen sufficiently
large. As a rule of thumb, which is also justified by the results
of some numerical experiments, we will use , since
the SDM is approximately constant over frequency in-
tervals smaller than . This may be verified by the Fourier
relationship (1) between the process SDM and ACF. Thus, if
we denote by the indicator function of the frequency in-
terval , we represent the optimization variable

as

(37)

with the vector-valued expansion coefficients . In-
serting (37) into (30) yields the finite-dimensional mLASSO

(38)

with and
. Here, we used with

the vectors given elementwise as .
Based on the solution of (38), we replace the
neighborhood estimate given by (34) in Algorithm 1 with

(39)

where .
We note that Algorithm 1, based on the discretized version

(38) of the mLASSO (30), scales well with the problem dimen-
sions, i.e., it can be implemented efficiently for large sample size

and large number of process components. Indeed, the ex-
pressions (32) and (33) can be evaluated efficiently using FFT
algorithms. For a fast implementation of the mLASSO (38) we
refer to [35].

IV. SELECTION CONSISTENCY OF THE PROPOSED SCHEME

We will now analyze the probability of Algorithm 1 to de-
liver a wrong CIG. Our approach is to, separately for each node

, bound the probability that the neighborhood is es-
timated incorrectly by Algorithm 1. Since the correct determi-
nation of all neighborhoods implies the delivery of the correct
CIG, we can invoke a union bound over all neighborhoods
to finally obtain an upper bound on the error probability of the
GMS method. For clarity, we detail the analysis only for the
specific neighborhood , the generalization to an arbitrary
neighborhood being trivially obtained by considering the
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permuted process (see our discussion around
(17)).
The high-level idea is to divide the analysis into a deter-

ministic part and a stochastic part. The deterministic part con-
sists of a set of sufficient conditions on the multitask learning
problem (21) such that the generalized support of the mLASSO

(cf. (30)), coincides with the generalized support
of the parameter vector in (22), which, in turn, is equal to

(cf. (26)). These conditions are stated in Theorem IV.1
below. The stochastic part of the analysis amounts to controlling
the probability that the sufficient conditions of Theorem IV.1 are
satisfied. This will be accomplished by a large deviation anal-
ysis of the BT estimator in (11). By combining these two parts,
we straightforwardly obtain our main result, i.e., Theorem IV.5
which presents a condition (lower bound) on the sample size

such that the error probability of our GMS method is upper
bounded by a prescribed value.
1) Deterministic Part: The deterministic part of our analysis

is based on the concept of the multitask compatibility condition
[20]. Given an index set of size , a system matrix

, defined for , is said to satisfy the
multitask compatibility condition with constant if

(40)

for all vectors , where

(41)

A quantity which is particularly relevant for the variable se-
lection performance of the mLASSO is the minimum norm

of the non-zero blocks of the pa-
rameter vector in (22), which we require to be
lower bounded by a known positive number , i.e.,

(42)

Based on and , the following result characterizes
the ability of the mLASSO (cf. (30)) to correctly
identify (cf. (26)).
Theorem IV.1: Consider the multitask learning model (21)

with parameter vector and system matrix
. The parameter vector is assumed to satisfy (42) and

having no more than non-zero components, i.e.,

(43)

Assume further that the system matrix possesses a positive mul-
titask compatibility constant (cf. (40)), and the error
term in (21) satisfies

(44)

Denote by the mLASSO estimate obtained from
(30) with . Then, the index set

(45)

coincides with the true generalized support of , i.e.,
.

Proof: Appendix B.
2) Stochastic Part: We now show that, for sufficiently large

sample size , the multitask learning problem (21) satisfies the
condition (44) of Theorem IV.1 with high probability. To this
end, we first verify that (44) is satisfied if the maximum SDM
estimation error

(46)

is small enough. We then characterize the large deviation be-
havior of to obtain an upper bound on the probability of Al-
gorithm 1 to deliver a wrong neighborhood, i.e., we bound the
probability , for an arbitrary but fixed node

.
In order to use Theorem IV.1, we need to ensure

(with given by (22)) to be suffi-
ciently large. This is accomplished by assuming (8), which is
valid for any process , and implying via (29) the lower
bound

(47)

In order to ensure validity of (44), we need the
following relation between the maximum correlation

and the estimation error in (46).
Lemma IV.2: Consider the multitask learning problem (21),

with observation vector and system matrix given
by (32) and (33), based on the permuted observation

of the process . We have

(48)

Proof: Appendix C.
Note that due to (48) and (47), a sufficient condition for (44)

to be satisfied is
(49)

The following result characterizes themultitask compatibility
condition of the system matrix given by (24), for a
process , i.e., in particular satisfying (2).
Lemma IV.3: Consider the multitask learning problem (21)

which is constructed according to (23), (24), based on the ob-
served process . If the estimation error in (46)
satisfies

(50)

then, for any subset with , the system matrix
, given for any by (24), satisfies the multitask

compatibility condition (40) with a constant

(51)

Proof: Appendix D.
Combining Lemma IV.3 with the sufficient condition (49),

we have that the multitask learning problem (21) satisfies the
requirement (44) of Theorem IV.1 if

(52)
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Indeed, the validity of (52) implies (50) since
which can be verified from the assumption (8) and the

relations , and

In what follows, we derive an upper bound on the probability
that (52) is not satisfied for a process . This will be
done with the aid of
Lemma IV.4: Let be the estimate of , obtained

according to (11) with sample size and window function
. For ,

(53)

where denotes the ACF moment (9) obtained for the
weighting function for

and , else.
Proof: Appendix E.

3) Main Result: Using Lemma IV.4, we can characterize the
probability of the condition (52) to hold. Since validity of (52)
allows to invoke Theorem IV.1, we arrive at
Theorem IV.5: Consider a process and the corre-

sponding SDM estimate (11). Then, if

(54)

(55)

the probability of Algorithm 1, using in (30)
and in (34), selecting the neighborhood of node

not correctly, i.e., , is upper bounded as
.

Note that Theorem IV.5 applies to the infinite dimensional
mLASSO optimization problem in (30), thereby ignoring any
discretization or numerical implementation issue. Nevertheless,
if the discretization is fine enough, i.e., the number of fre-
quency intervals used for the discretized mLASSO (38) is suf-
ficiently large, we expect that Theorem IV.5 accurately predicts
the performance of the GMS method obtained by using Algo-
rithm 1 with the discretized mLASSO (38) instead of the infinite
dimensional mLASSO (30).
Furthermore, Theorem IV.5 considers the probability of (the

first two steps of) Algorithm 1 to fail in selecting the correct
neighborhood of a specific node . Since any reason-
able combination strategy in step 3 of Algorithm 1 (such as the
“AND” and the “OR” rule discussed below Algorithm 1) will
yield the correct CIG if all neighborhoods are estimated cor-
rectly, we obtain, via a union bound over all nodes , the
following bound on the probability of Algorithm 1 yielding a
wrong CIG.
Corollary IV.6: Consider a process and the cor-

responding SDM estimate (11). Then, if

(56)

(57)

the probability of Algorithm 1 using in (30)
and in (34), yielding a wrong CIG, i.e., , is
upper bounded as .
According to (56), neglecting the term and assuming
fixed, the sample size has to grow polynomially with the

maximum node degree and logarithmically with the number of
process components . This polynomial and logarithmic scaling
of the sample size on the maximum node degree and
number of process components , respectively, is a typical re-
quirement for accurate GMS in the high-dimensional regime
[9], [11], [14].
Note also that, according to (56), the sample size has to

grow with the squared norm of the window function
employed in the BT estimator (11). For the inequality (57)

to hold, one typically has to use a window function whose
effective support matches those of the process ACF .
Therefore, Theorem IV.5 suggests that the sample size has to
grow with the square of the effective process correlation width
(effective size of the ACF support), which is quantified by .
However, some first results on the fundamental limits of GMS
for time series in indicate that the required sample size should
be effectively independent of the correlation width [36].
One explanation of the discrepancy between the sufficient

condition (56) and the lower bounds [36] on the required sample
size is that the derivation of Theorem IV.5 is based on requiring
the SDM estimator , given by (11), to be accurate simul-
taneously for all . According to [37], the achievable
uniform estimation accuracy, measured by the minimax risk,
depends inversely on the correlation width . However, the
analysis in [36] suggests that it is not necessary to accurately
estimate the SDM for all simultaneously. Indeed, for a
process with underlying CIG , the SDM values
are coupled over frequency via the relation (3). Due
to this coupling, the SDM needs to be estimated accurately only
on average (over frequency ). A more detailed performance
analysis of the selection scheme in Algorithm 1, taking the cou-
pling effect due to (3) into account, is an interesting direction
for future work.

V. NUMERICAL EXPERIMENTS

The performance of the GMS method given by Algorithm
1 is assessed by two complementary numerical experiments4.
In the first experiment we measure the ability of our method
to correctly identify the edge set of the CIG of a synthetically
generated process. In a second experiment, we apply our
GMS method to electroencephalography (EEG) measurements,
demonstrating that the resulting CIG estimate may be used for
detecting the eye state (open/closed) of a person.

A. Synthetic Process
We generated a Gaussian process of dimension

by applying a finite impulse response filter of length 2 to
a zero-mean stationary white Gaussian noise process

. The covariance matrix was chosen such that the
resulting CIG satisfies (7) with . The

4Matlab code to reproduce the results in this section is available upon request
from the author.
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Fig. 1. ROC curves for the compressive selection scheme given by Algorithm
1 and for a VAR-model based GMS scheme presented in [3].

non-zero filter coefficients and are chosen such that
the magnitude of the associated transfer function is uniformly
bounded from above and below by positive constants, thereby
ensuring condition (2).
We then computed the CIG estimate using Algorithm 1

based on the discretized version (38) of the mLASSO (with
) and the window function . In par-

ticular, we applied the alternating direction method of multi-
pliers (ADMM) to the optimization problem (38) (cf. [38, Sec.
6.4]).5 We set and ,
where was varied in the range . Within the
third step of Algorithm 1, we used the “OR” rule for combining
the neighborhood estimates .
In Fig. 1, we show receiver operating characteristic

(ROC) curves with the empirical false alarm rate
and the empirical detection probability6

for varying mLASSO parameter .
Here, denotes the edge set estimate obtained from Algorithm
1 during the -th simulation run. We averaged over
i.i.d. simulation runs. As can be seen from Fig. 1, our selection
scheme yields reasonable performance even if only
for a 64-dimensional process. We also adapted an existing
VAR-based network learning method [3] in order to estimate
the underlying CIG.7
The resulting ROC curves are also shown in Fig. 1. Note that

the performance obtained for the VAR-based method is similar
to a pure guess. The inferior performance of the VAR-based

5We used the all-zero initialization for the ADMM variables in our experi-
ments. In general, the convergence of the ADMM implementation for LASSO
type problems of the form (38) is not sensitive to the precise initialization of the
optimization variables [38].

6The quantities and may be interpreted as empirical proxies of a false
alarm- and a true detection probability, respectively.

7In a nutshell, the authors of [3] set up a VAR model
, with known order . The driving noise

is modeled as i.i.d. with known covariance matrix
. It can be shown that the inverse SDM of such a VAR process is given

by with the characteristic polynomial
[1]. Thus, for white driving noise with

, a Gaussian VAR-process with block-sparse VAR parameter matrices
, implying a sparse matrix , has a sparse CIG. The block-sparse

parameter matrices are estimated by solving a group LASSO problem
(being similar to the mLASSO (30)). For the details of this VAR-based group
LASSO approach, we refer to [3, Sec. II-A].

Fig. 2. Empirical detection probability vs. rescaled sample size
.

method is due to a model mismatch since the simulated process
(being a moving average process) is not well approximated by
a VAR process of order one.
We also evaluated the empirical detection probability for

fixed mLASSO parameter and varying rescaled
sample size . According to Fig. 2, and
as suggested by the bound (56) of Theorem IV.5, for a fixed
squared norm (the window function employed in
(11) is fixed throughout the simulation), the rescaled sample size

seems to be an accurate performance in-
dicator. In particular, the selection scheme in Algorithm 1 works
well only if .

B. Eye State Detection

In this experiment, we evaluate the applicability of our GMS
method for the problem of eye state detection based on EEG
measurement data. This problem is relevant, e.g., for medical
care or for driving drowsiness detection [39]. We used the EEG
dataset donated by Oliver Roesler from Baden-Wuerttemberg
Cooperative State University (DHBW), Stuttgart, Germany,
and available at the UCI machine learning repository [40]. The
dataset consists of 14980 time samples, each sample being a
vector made up of 14 feature values. The true eye state was
detected via a camera during the EEG recording.
As a first processing step, given the raw data, we removed

parts of the time series which contain outliers. In a second step
we performed a detrending operation by applying a boxcar filter
of length 5. Based on the true eye state signal, which is equal
to one if the eye was open and equal to zero if it was closed,
we extracted two data blocks , , one corresponding to
each state. We then applied Algorithm 1 with the discretized
mLASSO (38) (with ) instead of (30) and using again the
OR-rule in the third step, i.e., contains the edge if either

or . For the window function in the BT
estimator (11) we used the choice . In
Fig. 3, we show the two CIG estimates obtained for each of the
two data blocks each corresponding to a
sample size of . As evident from Fig. 3, the resulting
graph estimates for the two eye states differ significantly. In
particular, the graph obtained for the “eye closed” state contains
much more edges which are moreover localized at few nodes
having relatively high degree. Thus, the CIG estimate delivered
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Fig. 3. Resulting CIG estimate for the EEG time series under different eye
states. (a) “eye open”. (b) “eye closed”.

by Algorithm 1 could serve as an indicator for the eye state of a
person based on EEG measurements.

VI. CONCLUSION
We proposed a nonparametric compressive selection scheme

for inferring the CIG of a stationary discrete-time Gaussian
vector process. This selection scheme is based on combining a
BT estimator for the SDM with the mLASSO. The key idea be-
hind this novel selection scheme is the formulation of the GMS
problem for a stationary vector process as a multitask learning
problem. This formulation lends itself to applying mLASSO
to GMS for stationary vector processes. Drawing on an estab-
lished performance characterization [20] of the mLASSO, we
derived sufficient conditions on the observed sample size such
that the probability of selecting a wrong CIG does not exceed a
given (small) threshold. Some numerical experiments validate
our theoretical performance analysis and show superior perfor-
mance compared to an existing (VAR-based) method in case of
model mismatch.
Our work may serve as the basis for some interesting avenues

of further research, e.g., extending the concept of a CIG to pro-
cesses with a singular SDM or introducing the notion of a fre-
quency dependent CIG.

APPENDIX A
PROOF OF LEMMA III.1

Let and denote -periodic discrete-time
signals, with one period given by

for
for (58)

and corresponding DFTs

for . Note that (cf. (14))

(59)

Let us verify the equivalence of (16) and (11) entry-wise. To
this end, for arbitrary but fixed , consider the entry

of the SDM estimate given by (11). By inspecting
(11),

(60)

where denotes
the periodic autocorrelation function of and .
The DFTs and of the -periodic signals

and are given by [41, Ch. 8],
using ,

(61)

respectively. Here, de-
notes the DTFT of the window function employed in the
BT estimator (cf. (11)). Using again [41, Ch. 8], we obtain from
(60) that

(62)

Note that the last expression is nothing but the -th entry of
the RHS in (16).

APPENDIX B
PROOF OF THEOREM IV.1

Wewill need the following lemma, which is a straightforward
generalization of [20, Thm. 6.1].

Lemma B.1: Consider the multitask learning problem (21)
with parameter vector , observation vector

and system matrix defined by (22), (32) and (33),
respectively. Suppose,

(63)

with an index set of size . If the system ma-
trix possesses a positive multitask compatibility constant

, the mLASSO estimate given by (30)
satisfies

(64)

Evaluating Lemma B.1 for the specific choice ,
we have that, under condition (44) (which ensures (63)), the
mLASSO estimate satisfies

(65)

This implies, in turn, for any ,
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and similarly for any ,

Thus, the set coincides with the true
generalized support .

APPENDIX C
PROOF OF LEMMA IV.2

Let us recall the partitioning (27) and (36) of the SDM
and SDM estimate , respectively. For the sake of light
notation, we consider throughout the remainder of this proof an
arbitrary but fixed frequency and drop the argument of the
frequency dependent variables, e.g., , , , ,

, and so on. Moreover, we denote the th columns of
, and by , and , respectively.
First observe if we define the matrix by setting

if and else, we have

(66)

Consider the system matrix given by (33) and note that, by
comparing (25) with (36), we have

(67)

We also require a helpful identity for certain sub-matrices of
the SDM:

(68)

This can be verified by

Note that

(69)

Combining (69) with (68),

(70)

Applying the Cauchy-Schwarz inequality to the second term in
(70) and using

(71)

we obtain

(72)

Inserting the bound

into (72), finally yields

APPENDIX D
PROOF OF LEMMA IV.3

We first state an inequality which applies to any vector func-
tion for some . In particular,

(73)

where step is due to the Cauchy-Schwarz inequality. This,
in turn, implies for any (cf. (41)) that

(74)

Observe that

(75)

Since for any vector and ma-
trix , we obtain further

(76)

Combining (76) with (74), we have for any ,

(77)

APPENDIX E
PROOF OF LEMMA IV.4

We will establish Lemma IV.4 by bounding
for a fixed pair and then appealing to a

union bound over all pairs .
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Set , ,
and the bias . By the triangle inequality,

(78)

where the last inequality holds since for any , the bias
satisfies , with as defined in Lemma IV.4,
which is verified next.
From

we obtain

(79)
Similarly, with ,

(80)

where . Here,
,

and the matrix is defined element-wise as
for and else. Note that

and . By (80), for any ,

(81)

In order to upper bound the probability
, we now bound the probability of the event

, by first considering the large
deviation behavior of for a specific and then
using a union bound over all .
Since we assume the process to be Gaussian and sta-

tionary, the random vectors and , defining the random vari-
able , are zero-mean normally distributed with Toeplitz
covariance matrices and ,
whose first row is given by and

, respectively. According to [42, Lemma
4.1], and due to the Fourier relationship (1), we can bound the
spectral norm of as

Here, step follows from (2) together with the matrix norm
inequality [43, p. 314]. Similarly, one can also
verify that .
Therefore, for any , we can invoke Lemma F.2 with

the choices , , , and
, yielding

(82)

Then, by a union bound over all ,

(83)

and, in turn,

(84)

Applying (84) to (78), we have for any that

Another application of the union bound (over all pairs
) finally yields (53).

APPENDIX F
LARGE DEVIATIONS OF A GAUSSIAN QUADRATIC FORM
Lemma F.1: Consider the quadratic form

with real-valued standard normal vector and a
real-valued symmetric matrix with .
For any ,

(85)

Proof: Our argument closely follows the techniques used
in [10]. Consider the eigenvalue decomposition of , i.e.,

(86)

with eigenvalues and eigenvectors forming an
orthonormal basis for . Note that, for any , we have

. Based on (86), we can rewrite the quadratic
form as

(87)

with i.i.d. standard Gaussian random variables , for
. We then obtain

(88)
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for any positive . In what follows, we set

(89)

which implies, since and by assumption,

(90)

Due to (90), we also have and can therefore use the
identity

(91)

valid for a standard Gaussian random variable and
. Observe that

(92)

Since the variables are i.i.d.,

which, upon inserting into (92) yields

(93)

By (90), we can then apply the inequality
(valid for ) to (93), yielding

(94)

Putting together the pieces,

Lemma F.2: Consider two real-valued zero-mean random
vectors and , such that the stacked vector

is zero-mean multivariate nor-
mally distributed, i.e., with covariance matrix

. Let the individual covariance matrices satisfy
, . We can then characterize

the large deviations of the quadratic form , with

an arbitrary (possibly non-symmetric) real-valued matrix
satisfying , as

(95)

valid for any .
Proof: Introducing the shorthand
, an application of the union bound yields

(96)

We will derive an upper bound on by separately upper
bounding and . The derivations are completely
analogous and we will only detail the derivation of the upper
bound on .
Defining the matrices via the matrix square

root of the covariance matrix , i.e.,

(97)

we have the following innovation representation for the random
vectors and :

(98)

where is a standard normally distributed random
vector of length . Note that and ,
implying and . Thus,

(99)

Let us further develop

(100)

with the symmetric matrix

(101)

In (100), step follows from the identity
, which holds for an arbitrary matrix

. Combining (101) with (99) yields

(102)

where step is due to the triangle inequality and submulti-
plicativity of the spectral norm. Using (102), the application of
Lemma F.1 to (100) yields

(103)

and, similarly,

(104)
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Inserting (103) and (104) into (96) finally yields
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